tions with moderate numbers of integration points the area has been divided into three different sections of identical size. The effective indices of the lowest order eigenmodes within the three different areas are shown in Table 1. The accuracy of the computed propagation constants of the modes depends on the number of integration points. For the integration named '4 x 8' an eight point quadrature formula has been used at each side of the rectangle. The calculations '8 x 8' used the same integration formula but all sides of the rectangle were cut in halves. So, eight integrals have been computed by an 8 point formula. The results have been compared with the SVD algorithm [2]. Here, the start point has to be close to the unknown zero. Therefore, the calculation of all effective indices within the observed area can be time consuming.

<table>
<thead>
<tr>
<th>Region</th>
<th>Mode</th>
<th>Integration</th>
<th>Cauchy</th>
<th>SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1st TE</td>
<td>4 x 8</td>
<td>$3.295816-1.340410^4$</td>
<td>$3.295816-1.340410^4$</td>
</tr>
<tr>
<td>II</td>
<td>1st TM</td>
<td>4 x 8</td>
<td>$3.297359-5.210110^4$</td>
<td>$3.297359-5.210110^4$</td>
</tr>
<tr>
<td>III</td>
<td>3rd TE</td>
<td>4 x 8</td>
<td>$3.276125-1.460410^4$</td>
<td>$3.276125-1.460410^4$</td>
</tr>
</tbody>
</table>

It can be seen that the integration '4 x 8' does not lead to accurate imaginary parts of the effective indices. For double the number of boundary elements, the results are closer to the values calculated by the SVD algorithm. The accuracy can be increased with Gaussian integration formulas of higher order or smaller observed areas. Using the algorithm proposed in this Letter, two TM and four TE eigenmodes have been determined in the whole area. Therefore, the algorithm is very suitable for the determination of several complex effective indices in only one computation step.

Conclusion: A method has been presented for the calculation of eigenmodes with complex effective indices. Cauchy’s theorem was used in connection with the Gaussian integration formula. Effective indices were compared with values computed by an SVD algorithm. The proposed method can be used as an automatic computation algorithm for the determination of several zeros of a complex analytic function within a closed area.

© IEE 1998

Electronics Letters Online No: 199861256
O. Conradi (Allgemeine und Theoretische Elektrotechnik, Fern Universität Hagen, D-58084 Hagen, Germany)

1866 ELECTRONICS LETTERS 17th September 1998 Vol. 34 No. 19

References

Experimental demonstration of efficient all-optical code-division multiplexing

Jian-Guo Zhang, Lian-Kuan Chen and Wing C. Kwong

New experiments on all-optical code-division multiplexing (AO-CDM) are described. Unlike conventional designs, the proposed transmitter does not require an optical intensity modulator to on-off modulate ultrashort optical clock pulses. Moreover, the use of a 2r prime code results in a simple AO-CDM encoder and decoder with an all-serial architecture. Thus, new systems based on the above will be more cost- and power-effective than conventional AO-CDM systems. The reduction in timing jitter is also considered.

Introduction: Optical code-division multiplexing (CDM) systems have been demonstrated [1-3]. Although the use of an optical address code with cross-correlation constraint $\lambda = 1$ can lead to a lower bit error rate than for $\lambda > 1$ [1], the system complexity and power loss must be also considered for all-optical CDM (AO-CDM). Recently, a study has shown that 2r codes can be used to reduce the complexity of an AO-CDM encoder/decoder [2]. This is achieved by employing an all-serial architecture as shown in Fig. 1, resulting in fewer optical components and lower optical power loss than for a conventional parallel encoder/decoder. A silica-based planar lightwave circuit (PLC) can feasibly be used to implement this power-efficient, waveguide-integrable all-serial architecture. Moreover, by integrating the silica-based PLC with an Er-doped silica waveguide amplifier [6], a lossless AO-CDM encoder (or decoder) can be also realised. In this Letter, we report new experiments on AO-CDM systems using 2r prime code and...
low-cost all-serial encoders/decoders. Unlike conventional AO-CDM systems [1 – 3], the proposed transmitter does not require an optical intensity modulator, and therefore, the new AO-CDM systems will be more cost- and power-effective than conventional systems.

Principle and experiment: The experimental setup is shown in Fig. 2. The codewords used in this experiment are the 0th and 3rd codewords of a 2^7 prime code with k = 2, code weight 8, code size 11, and length L = 121 for n = 3, as constructed in [4], i.e. $C_0 = (XX1E1E1E1E1E1E1E1)$ and $C_3 = (XX000010000 0000000000 0100000000 0000100000 0000000100 E1 00100010000 0000100000 X)\), where X and E denote 11 and 10 adjacent zeros in a sub-sequence, respectively. Assume that the data rate f_d is 100Mbit/s. The slot width τ is then equal to $1/f_dL = 52.6$ ps.

As shown in Fig. 2, the 100MHz electrical clock signal is used to drive a comb generator of which the output signal is added to the 100Mbit/s electrical data at the transmitting end. Then a 1.55μm distributed feedback (DFB) laser diode (LD) is driven by a current signal containing three components (i.e. a DC prebias, a data current pulse, and a clock pulse). By correctly setting the prebias and data currents, the DFB LD is biased just below the threshold at which gain switching occurs. The LD is gain switched only if a data pulse and a clock pulse are simultaneously present so that the carrier concentration above the threshold [5]. Thus, the ultrashort optical clock signal is modulated by electrical data bits at the LD, without using any optical intensity modulator. The resulting optical pulse is then fed into AO-CDM encoder i to generate codeword C_i ($i = 0$ and 3). For a 2^n codeword of $n = 3$, the all-serial encoder (or decoder) comprises only $n + 1 = 4$ passive optical 2×2 couplers and six optical delay lines which are the pigtails fibres of low-cost 2×2 couplers (see Fig. 3); while an all-parallel encoder (or decoder) requires 14 optical 1×2 couplers and eight optical fibres [2]. Thus, use of the all-serial structure can reduce the complexity and power loss of AO-CDM encoders/decoders, especially for large n.

An electrical NRZ data bit '1' (with ECL logic) is shown in Fig. 3 (upper trace). The corresponding codewords C_0 and C_3 from two optical encoders are shown as the middle and lower traces in Fig. 3. The optical clock pulse used has a pulsewidth of 64ps. Although commercially available low-cost 2×2 optical couplers are used in the encoders/decoders, nearly constant-amplitude optical pulses are obtained for C_0, by using couplers of 2.9dB or 3.1dB splitting ratio as well as carefully cutting and fusing pigtails fibres between two couplers. In the experiment, we can control the time error of the fibre delay lines within 17ps as measured. For C_3, unequal pulse amplitudes are visible because optical 2×2 couplers with a worse ratio are used. This also suggests that the use of a silica-based PLC should lead to lower power loss, uniform splitting ratio, and very precise time delay for all-serial encoders/decoders. With the silica-based PLC, a power-efficient, waveguide-integrable AO-CDM encoder or decoder can be feasibly implemented. The autocorrelation of C_3 is measured at the output of decoder 0,

Fig. 4 Measured results

a Auto-correlation of C_3

Timebase: 2.0ns/div, channel: 50mV/div

b Cross-correlation of C_3 with C_0

Timebase: 1.5ns/div, channel: 20mV/div

Fig. 5 Measured gain-switching optical clock pulses

a Without optical-injection locking

b With optical-injection locking

In conclusion, we have demonstrated high-speed AO-CDM using a 2^n prime code and low-cost all-serial encoders/decoders. Since no optical intensity modulators are required, cost- and power-effective AO-CDM systems can be realised. The encoders and decoders are waveguide-integrable.
Experimental evidence of pseudo-periodical soliton propagation in dispersion-managed link

F. Favre, D. Le Guen and T. Georges

The first experimental evidence of pseudo-periodical soliton propagation in a dispersion-managed link is presented. It is shown that the prechirp is a key element for the control of nonlinearity as predicted by the theory.

Introduction: Soliton transmission is widely studied for large capacity transoceanic and terrestrial systems. Since the most common embedded fibre is standard step-index fibre, periodical dispersion compensation is required to upgrade long-distance terrestrial systems beyond 50 Gbit/s per channel [1]. In this context, soliton WDM transmission of 16 channels, each modulated at 20 Gbit/s, has been recently demonstrated across 1300 km of standard fibre with 100 km dispersion-compensated spans [2].

The aim of this study is to compare measured and predicted pulse evolution along a dispersion-managed link in the anomalous-dispersion regime using a recirculation loop with 100 km dispersion-compensated span of standard fibre, as in [2].

Theoretical background: The periodic line is shown in Fig. 1. C is the cumulative dispersion of the element controlling the chirp at the emitter. The span z_s with dispersion D_s is followed by a dispersion compensation unit with a cumulative dispersion c. We consider in the following the propagation of a single Gaussian pulse in the periodic line as in similar studies. The propagation of a pulse $s(x, t) = A(x) h_{t}(x)$ in such a line with dispersion $D(z)$ and energy evolution $\sigma(z)$ can be approximated by the non-linear Schrödinger equation

$$i\sigma^2 + \frac{1}{2} D(z)\sigma'' + a(z)|\sigma|^2 \sigma = 0$$

The energy $E = \frac{1}{2} \int_0^L |\sigma|^2 dh$ is a constant of the motion and the pulse energy along the line is equal to $\sigma(z)E$. In the Gaussian approximation, σ can be expressed as

$$\sigma(z, t) = \sqrt{\frac{E}{\gamma}} \exp \left[-\frac{1}{2} \left(\frac{t^2}{\tau_0^2} + \frac{\phi^2}{\tau_1^2} \right) \right]$$

The pulse width τ_0 and the chirp ϕ can be related to two parameters γ and C by

$$\gamma ? W^2 = 1 + \frac{\gamma^2 \tau_0^2}{2}$$

$$\phi = -\gamma C$$

In the linear regime, γ is constant and C corresponds to cumulative dispersion. With nonlinearity, it was shown in [3] that their evolution is governed by the following equations:

$$C_s' = D + \left(\frac{C^2}{2} - \frac{1}{\gamma^2} \right) \frac{aE}{W^3 \sqrt{2\pi}}$$

$$\gamma' = \frac{2\gamma C}{W^3 \sqrt{2\pi}}$$

Under the specific conditions of propagation studied below, γ (which is related to the spectral width) and C change significantly along a span. However, owing to the compensation, they are weakly modified from one span input to the next. The series (γ_s, C_s) of the parameters at the input of each span can be obtained by successive integrations of eqn. 4 over a span. Fig. 2 shows the evolution of (γ_s, C_s) from span to span for different values of prechirp.

Closed trajectories are obtained for initial pulse characteristics different from those of the fixed point (0.65, -1.78) which correspond to steady propagation.

Fig. 1 Schematic diagram of transmission link

Fig. 2 (γ_s, C_s) anti-clockwise trajectories calculated from eqn. 4 for experimental conditions (bold lines)

Fig. 3 Experimental setup

Experimental setup: The experimental setup is presented in Fig. 3. Nearly Gaussian 30 ps pulses are generated at 10 GHz for $\lambda = 1558$ nm using a lithium niobate electro-optic modulator (EOM).